Calculus I: A Guided Inquiry

Andrei Straumanis, The POGIL Project
Catherine Bénéteau, University of South Florida
Zdeňka Guadarrama, Rockhurst University
Jill E. Guerra, University of Arkansas – Fort Smith
Laurie Lenz, Marymount University

Wiley & Sons / POGIL Press
Printed and distributed by agreement with John Wiley and Sons, Inc.
Proceeds to benefit the POGIL Project www.pogil.org

Contents

Functions
F1: Review of Functions
F2: Characteristics of Functions
F3: Compositions of Functions

Limits
L1: Limit of a Function
L2: Limit Laws
L3: Precise Definition of a Limit
L4: Continuity

Derivatives
D1: Velocity, Introduction to Derivatives
D2: Derivative at a Point
D3: Derivative as a Function
D4: Differentiability
D5: Second Derivative

Differentiation Techniques
DT1: Power, Constant Multiple, Sum and Difference Rules
DT2: Product and Quotient Rules
DT3: Derivatives of Exponential and Logarithm Functions
DT4: Derivatives of Trigonometric Functions
DT5: The Chain Rule
DT6: Derivatives of Inverse Functions
DT7: Implicit Differentiation

Differentiation Applications
DA1: Related Rates
DA2: Linear Approximation
DA3: Mean Value Theorem
DA4: Maximum and Minimum Values
DA6: Optimization

Integration
I1: Area and Distance
I2: Riemann Sums
I3: Definite Integrals
I4: Fundamental Theorem of Calculus (FTC)
I5: Antiderivatives and the FTC
I6: Indefinite Integrals

Bring active learning into your classroom or recitation section.
The guided activities found in this unique workbook cover all the topics of a traditional Calculus I course using an approach based on research on how students learn.

In each activity, specially designed questions guide students to examine a data set (often a graph or table) and construct an understanding of the underlying concept.

Students simultaneously learn course content and key reasoning skills, including how to ask questions, think critically, analyze data and graphs, solve problems, and work successfully as part of a collaborative team.

The active thinking, discussion, and discovery that take place during class frequently culminate in an Aha! Moment. Such moments build confidence. Facing subsequent challenges, students rely less on memorization, and instead work to create their own understanding.

Students come away with a sense of ownership over the material and an I can do this attitude.